# Terpendoles, Novel ACAT Inhibitors Produced by Albophoma yamanashiensis

### III. Production, Isolation and Structure Elucidation of New Components

HIROSHI TOMODA, NORIKO TABATA, DA-JUN YANG, HIROAKI TAKAYANAGI and SATOSHI ŌMURA\*

Research Center for Biological Function, The Kitasato Institute, and School of Pharmaceutical Sciences, Kitasato University Minato-ku, Tokyo 108, Japan

(Received for publication January 30, 1995)

Eight new components of terpendoles E to L were isolated and characterized from the culture broth of *Albophoma yamanashiensis* using a different production medium. All the structures were elucidated by spectroscopic analyses including various NMR experiments, indicating that all the terpendoles have the same indoloditerpene core as terpendoles A to D. Terpendoles J, K and L showed the moderate inhibition against acyl-CoA : cholesterol acyltransferase (ACAT) activity with IC<sub>50</sub> values of 38.8, 38.0 and 32.4  $\mu$ M in rat liver microsomes, respectively. But terpendoles E~I showed weak activities (IC<sub>50</sub> 145~388  $\mu$ M).

We reported new fungal indoloditerpenes named terpendoles as inhibitors of acyl-CoA: cholesterol acyl-transferase  $(ACAT)^{1,2}$ . Four terpendoles A to D, emindole SB and paspaline were isolated from the culture broth when the producer of *Albophoma yamanashiensis*<sup>5)</sup> was fermented in a soluble starch and soybean meal-based medium. Further isolation study from the culture broth of the strain fermented in a different fermentation medium led to the discovery of eight more components of terpendoles  $E \sim L$  (Fig. 1). In this paper, the fermentation, isolation and structure elucidation of the terpendoles are described.

### **Materials and Methods**

### General Experimental Procedures

Albophoma yamanashiensis<sup>5)</sup> was used for production of terpendoles. Kieselgel 60 (E. Merck) and Sephadex LH-20 (Pharmacia) were used for column chromatography. HPLC was carried out using JASCO (TRI ROTAR V) and Waters 600E systems.

## Spectroscopic Studies

UV spectra were recorded on a Shimadzu UV-200S spectrophotometer. IR spectra were recorded on a Horiba FT-210 infrared spectrometer. Melting points were measured with a Yanaco micro melting point apparatus. Optical rotations were obtained with a JASCO DIP-370 digital polarimeter. EI-MS spectra were recorded on a JEOL JMS-D 100 mass spectrometer at 20 eV. FAB-MS spectra were recorded on a JMS-DX300 mass spectrometer. The various NMR spectra were obtained on a Varian XL-400 spectrometer.

# Single Crystal X-Ray Analysis

Terpendole E was recrystallized from MeOH to establish the relative stereochemistry. The colorless plate crystal having approximate dimensions of  $0.4 \times 0.5 \times$ 0.1 mm was mounted on a glass fiber. All measurements were made on a Rigaku AFC-5R diffractometer with graphite monochromated  $CuK_{\alpha}$  radiation. The data were collected at a temperature of  $23 \pm 1^{\circ}$ C using the  $\omega$ -2 $\theta$ scan technique to a maximum  $2\theta$  value of  $140.3^{\circ}$ . Pertinent crystal, data collection, and refinement parameters are summarized in Table 3. Neutral atom scattering factors were taken from CROMER and WABER<sup>6)</sup>. Anomalous dispersion effects were included in Fcalc<sup>7</sup>); the values for  $\Delta f'$  and  $\Delta f''$  were those of CROMER<sup>6</sup>. All calculations were performed using the TEXSAN<sup>8)</sup> crystallographic software package of Molecular Structure Corporation. The structure was solved by direct methods<sup>9,10</sup>.

### ACAT Activity

ACAT activity was measured in an enzyme assay using rat liver microsomes as reported previously<sup>11)</sup>.

### Antimicrobial Activity

Antimicrobial activity was tested using paper disks (i.d. 6mm, ADVANTEC). Bacteria were grown on Müeller-Hinton agar medium (Difco), and fungi and yeasts were grown on potato broth agar medium. Antimicrobial activity was observed after 24-hour incubation at 37°C for bacteria and after 48-hour incubation at 27°C for fungi and yeasts.



### Results

### Fermentation

A slant culture of A. yamanashiensis grown on YpSs agar (soluble starch 1.5%, yeast extract 0.4%,  $K_2HPO_4$ 

0.1%,  $MgSO_4 \cdot 7H_2O$  0.05% and agar 2.0%, pH 6.0) was used to inoculate 500-ml Erlenmeyer flasks containing 100 ml of the seed medium (glucose 2.0%, yeast extract 0.2%,  $MgSO_4 \cdot 7H_2O$  0.05%, Polypepton 0.5%,  $KH_2PO_4$  0.1% and agar 0.1%, pH 6.0). The flasks were

shaken on a rotary shaker for 2 days at 27°C. Two hundred milliliters of the seed culture were transferred into 20 liters of a production medium (maltose 5.0%, "Ebios" (Asahi Beer Co.) 2.5%, dry yeast 1.5%, KH<sub>2</sub>PO<sub>4</sub> 0.05%, MgSO<sub>4</sub> · 7H<sub>2</sub>O 0.05%, and KBr 1.0%, pH 7.0) in a 30-liter jar fermentor. The fermentation was carried out under the conditions as follows: aeration at 10 liters/minute, agitation at 250 rpm and temperature at 27°C. The production of terpendoles was measured by HPLC under the following conditions : Senshu pak ODS-H-1251, 4.6 × 250 mm; an isocratic 60% CH<sub>3</sub>CN, at 0.7 ml/minute (0~7 minutes) and a convex gradient of program No. 5 (Waters 600E) from 80% CH<sub>3</sub>CN to 98% CH<sub>3</sub>CN, 1.0 ml/minute (7~40 minutes); UV detection at 280 nm. All terpendoles A to L, paspaline and emindole SB were separated (Fig. 2) to determine their titers in the culture broth. A typical time course of the fermentation is shown in Fig. 3. The production of terpendoles A and B was very low under this fermentation condition.

## Isolation

The isolation procedure for terpendoles E to L is summarized in Fig. 4. The 96-hour old whole broth (20 liters) was extracted with 20 liters of ethyl acetate. The extracts were dried over  $Na_2SO_4$  and concentrated *in* 



Fig. 2. Separation of all terpendoles by HPLC.

Terpendoles F  $0.24 \mu g$ , I  $0.26 \mu g$ , H  $0.04 \mu g$ , G  $0.14 \mu g$ , E  $0.26 \mu g$ , A  $0.20 \mu g$ , B  $0.97 \mu g$ , K  $0.11 \mu g$ , C  $1.18 \mu g$ , J  $0.19 \mu g$ , D  $0.22 \mu g$  and L  $0.14 \mu g$ , paspaline  $0.16 \mu g$  and emindole SB  $0.15 \mu g$  were injected.



Fig. 3. Time course of terpendoles production in a 30-liter jar fermentor.

vacuo to dryness to yield a brown oil (13.5 g). The material was distributed in a solution of *n*-hexane-methanol- $H_2O$  (570 ml, 40:16:1, v/v). Then the lower layer was concentrated *in vacuo* to dryness to yield a brown oil (9.5 g). The oil was applied on a silica gel column

(Kieselgel 60, 200 ml) previously equilibrated with chloroform. The materials were eluted with chloroform (1000 ml) and chloroform - methanol (98:2, 1000 ml). Each 100 ml of the elution was successively collected. The three active fractions were pooled; fr-1 (2nd  $\sim$  10th

# Fig. 4. Summary of isolation procedure of terpendoles E to L.



Table 1. Physico-chemical properties of terpendoles E, F, G, H, I, J, K and L.

|                                                 | Terpendole E                                    | Terpendole F                                    | Terpendole G                                    | Terpendole H                                    | Terpendole I                                    | Terpendole J                                    | Terpendole K                                    | Terpendole L                                    |
|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Appearence                                      | Colorless crystal                               | White powder                                    |
| Molecular weight                                | 437                                             | 453                                             | 451                                             | 451                                             | 453                                             | 521                                             | 517                                             | 587                                             |
| Molecular formula<br>FAB-MS(m/z)                | C <sub>28</sub> H <sub>39</sub> NO <sub>3</sub> | C <sub>28</sub> H <sub>39</sub> NO <sub>4</sub> | C <sub>28</sub> H <sub>37</sub> NO <sub>4</sub> | C <sub>27</sub> H <sub>33</sub> NO <sub>5</sub> | C <sub>27</sub> H <sub>35</sub> NO <sub>5</sub> | C <sub>32</sub> H <sub>43</sub> NO <sub>5</sub> | C <sub>32</sub> H <sub>39</sub> NO <sub>5</sub> | C <sub>37</sub> H <sub>49</sub> NO <sub>5</sub> |
| Positive                                        | 437[M] <sup>+</sup><br>460[M+Na] <sup>+</sup>   | 453[M] <sup>+</sup><br>476[M+Na] <sup>+</sup>   | 451[M] <sup>+</sup><br>474[M+Na] <sup>+</sup>   | 451[ <b>M</b> ]⁺                                | 453[M]*                                         | 521[M]*<br>544[M+Na]*                           | 518[M+H]*                                       | 587[M]*<br>610[M+Na]*                           |
| Negative<br>EI-MS(m/z)<br>HREI-MS(m/z)          | 436[M-H] <sup>+</sup><br>437[M] <sup>+</sup>    | 452[M-H] <sup>+</sup><br>453[M] <sup>+</sup>    | 450[M-H] <sup>+</sup><br>451[M] <sup>+</sup>    | 450[M-H]⁺<br>451[M]⁺                            | 452[M-H]⁺<br>453[M]⁺                            | NT<br>521[M]*                                   | NT<br>517[M] <sup>+</sup>                       | NT<br>587[ <b>M</b> ]⁺                          |
| Calcd                                           | 437.2920                                        | 453.2879                                        | 451.2713                                        | 451.2350                                        | 453.2506                                        | 521.3130                                        | 517.2816                                        | 587.3598                                        |
|                                                 | (for C28H39NO3)                                 | (for C28H39NO4)                                 | (for C28H37NO4)                                 | (for C27H33NO5)                                 | (for C27H35NO5)                                 | (for C32H43NO5)                                 | (for C32H39NO5)                                 | (for C37H49NO5)                                 |
| Found                                           | 437.2924                                        | 453.2879                                        | 451.2703                                        | 451.2373                                        | 453,2496                                        | 521.3168                                        | 517.2828                                        | 587.3546                                        |
| $[\alpha]_{D}^{28}$ (c 1.0, CH <sub>3</sub> OH) | -36.4 °                                         | -35.8 °                                         | -28.0 °                                         | -47.0 °                                         | +7.0 °                                          | -30.3 °a)                                       | +21.8 °                                         | +16.5 °                                         |
| UV $\lambda_{max}^{CH_3OH}$ nm ( $\epsilon$ )   | 280 (8,700)<br>228 (38,600)<br>213sh (21,000)   | 280 (10,900)<br>228 (48,000)<br>207sh (25,400)  | 280 (11,800)<br>228 (49,400)<br>206sh (23,900)  | 279 (7,900)<br>227 (35,400)<br>203sh (19,100)   | 280 (11,200)<br>228 (47,400)<br>204sh (27,100)  | 282 (9,400) <sup>a)</sup><br>238 (13,100)       | 280 (11,200)<br>228 (38,600)<br>204sh (29,000)  | 283 (9,500)<br>230 (32,500)<br>203sh (29,400)   |
| IR $v_{max}^{KBr}$ (cm <sup>-1</sup> )          | 2939, 1635, 1454<br>1373, 1302, 1228<br>1163    | 2939, 1454, 1376<br>1302, 1230                  | 2935, 1706, 1666<br>1454, 1376, 1301<br>1230    | 2935, 1450, 1367<br>1230, 1176, 1105            | 2939, 1452, 1302<br>1259, 1213, 1174            | 2939, 1452, 1365<br>1302, 1255                  | 2935, 1385, 1302<br>1232, 1169, 1090            | 2935, 1576, 1454<br>1382, 1305, 1209<br>1097    |
| Melting point                                   | 174~176°C                                       | NT                                              | 248~250°C<br>(dec.)                             | NT                                              | NT                                              | 248~250°C<br>(dec.)                             | NT                                              | 148~150°C                                       |

a) measured in CHCl<sub>3</sub>, NT: not tested

fractions) containing terpendoles C, D, E, J, K and L, paspaline and emindole SB, fr-2 (11th~15th fractions) containing terpendoles G, H and I, and fr-3 (16th~20th fractions) containing terpendole F. The fr-1 was concentrated *in vacuo* to give a brown material (3.9g). The components were purified by preparative HPLC (YMC-pack D-ODS-5,  $20 \times 250$  mm; solvent, 82.5%CH<sub>3</sub>CN; UV at 282 nm; 9.0 ml/minute). Under the conditions, terpendoles C, D, E, J, K and L, emindole SB and paspaline were eluted with retention times of 19.5, 33.5, 13.0, 21.5, 17.0, 40.5, 42.0 and 38.5 minutes, respectively. All these fractions were concentrated and extracted with ethyl acetate to give pure terpendoles E (233 mg), K (16.0 mg), C (230 mg) and D (77.0 mg), paspaline (71.0 mg) and emindole SB (230 mg) as white powders, but fractions of terpendoles J (47.0 mg) and L (11.0 mg) still contained impurity. Therefore, terpendole L was re-purified by preparative HPLC under the same conditions to give pure terpendole L (8.3 mg) as white powder. Terpendole J was further purified by preparative HPLC using a different solvent of 70% CH<sub>3</sub>CN. The fraction eluting with a retention time of 56.5 minutes was concentrated and extracted with ethyl acetate to give pure terpendole J (30.0 mg) as white powder. The fr-2 was concentrated *in vacuo* to give a pale yellow material (0.77 g). Terpendoles G, H and I were finally purified by

| Table 2-1. | <sup>1</sup> H and <sup>13</sup> C NMR | chemical shifts | of terpendoles | E, F | and G |
|------------|----------------------------------------|-----------------|----------------|------|-------|
|------------|----------------------------------------|-----------------|----------------|------|-------|

| Carbon                                                                                  | Те                                                                                  | Terpendole E                                                                                                                                                     |                                                                                     | erpendole F                                                                                                                                                                      | Terpendole G                                                                        |                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.                                                                                     | <sup>13</sup> C chemical<br>shifts (ppm) <sup>a</sup>                               | <sup>1</sup> H chemical<br>shifts (ppm) <sup>b</sup>                                                                                                             | <sup>13</sup> C chemical<br>shifts (ppm) <sup>2</sup>                               | <sup>1</sup> H chemical<br>shifts (ppm) <sup>b</sup>                                                                                                                             | <sup>13</sup> C chemical shifts (ppm) <sup>a</sup>                                  | <sup>1</sup> H chemical<br>shifts (ppm) <sup>b</sup>                                                                                       |  |
| NH-1<br>C-2<br>C-3<br>C-4                                                               | 151.3<br>52.7<br>40.1                                                               | 10.54 (IH, s)                                                                                                                                                    | 151.5<br>53.0<br>39.2                                                               | 10.53 (1H, s)                                                                                                                                                                    | 150.8<br>51.4<br>40.1                                                               | 10.64 (1H, s)                                                                                                                              |  |
| C-5<br>C-6                                                                              | 32.1 Ha<br>Hb<br>25.0                                                               | 1.86 (1H, m)<br>1.69 (1H, m)<br>1.67 (2H, m)                                                                                                                     | 29.5 Ha<br>Hb<br>24.3                                                               | 1.88 (1H, m)<br>1.68 (1H, m)<br>1.52 (1H, m)                                                                                                                                     | 31.3 Ha<br>Hb<br>24.3 Ha                                                            | 1.99 (1H, m)<br>1.75 (1H, m)<br>1.85 (1H, m)                                                                                               |  |
| C-7<br>C-9<br>C-10                                                                      | 76.9<br>78.9<br>29.3                                                                | 3.48 (1H, dd, <i>J</i> =11.0, 4.0 Hz)<br>3.42 (1H, dd, <i>J</i> =12.0, 2.5 Hz)<br>1.45 (1H, dt, <i>J</i> =14.0, 2.5 Hz)<br>1.78 (1H, dd, <i>J</i> =14.0, 6.0 Hz) | 76.7<br>78.8<br>32.2                                                                | 1.58 (1H, m)<br>3.49 (1H, dd, <i>J</i> =11.0, 4.0 Hz)<br>3.45 (1H, dd, <i>J</i> =12.0, 2.5 Hz)<br>1.46 (1H, dt, <i>J</i> =14.0, 2.5 Hz)<br>1.85 (1H, dd, <i>J</i> =14.0, 6.0 Hz) | Hb<br>75.1<br>78.4<br>31.2                                                          | 2.16 (1H, m)<br>3.64 (1H, t, J=9.0 Hz)<br>3.43 (1H, d, J=9.0 Hz)<br>1.21 (1H, d, J=9.0 Hz)<br>1.59 (1H, d, J=9.0 Hz)                       |  |
| C-10-OH<br>C-11<br>C-11-OH                                                              | 68.4                                                                                | 3.59 (1H, brd, J=3.0 Hz)<br>4.59 (1H, d, J=4.0 Hz)                                                                                                               | 63.4                                                                                | 4.18 (1H, brd, J=3.0 Hz)<br>4.48 (1H, d, J=4.0 Hz)                                                                                                                               | 65.4<br>53.0                                                                        | 4.05 (1H, s)<br>5.20 (1H, s)                                                                                                               |  |
| C-12<br>C-13<br>C-13-OH                                                                 | 37.0                                                                                | 2.13 (1H, dd, <i>J</i> =12.5, 2.0 Hz)                                                                                                                            | 43.4<br>37.8                                                                        | 2.10 (1H, dd, <i>J</i> =12.5, 2.0 Hz)                                                                                                                                            | 40.9                                                                                | 2.06 (1H, dd, <i>J</i> =12.5, 2.0 Hz)                                                                                                      |  |
| C-14<br>C-15                                                                            | 21.0 Ha<br>Hb<br>24.3                                                               | 1.62 (1H, m)<br>1.23 (1H, m)<br>1.57 (2H, m)                                                                                                                     | 23.0 Ha<br>Hb<br>25.5                                                               | 1.70 (1H, m)<br>1.68 (1H, m)<br>1.46 (1H, m)                                                                                                                                     | 21.5 Ha<br>Hb<br>24.6 Ha                                                            | 1.79 (1H, m)<br>1.32 (1H, m)<br>1.50 (1H, m)                                                                                               |  |
| C-16<br>C-17                                                                            | 48.6<br>27.1 Ha<br>Hb                                                               | 2.63 (1H, m)<br>2.22 (1H, dd, <i>J</i> =13.0, 2.0 Hz)<br>2.54 (1H, dd, <i>J</i> =13.0, 6.0 Hz)                                                                   | 48.9<br>27.2 Ha<br>Hb                                                               | 2.60 (1H, m)<br>2.60 (1H, m)<br>2.21 (1H, dd, <i>J</i> =13.0, 2.0 Hz)<br>2.54 (1H, dd, <i>J</i> =13.0, 6.0 Hz)                                                                   | 48.5<br>27.0 Ha<br>Hb                                                               | 2.52 (1H, hr)<br>2.52 (1H, brs)<br>2.21 (1H, m)<br>2.55 (1H, t, J=6.0Hz)                                                                   |  |
| C-18<br>C-19<br>C-20<br>C-21<br>C-22<br>C-23<br>C-24<br>C-25<br>C-26<br>C-27<br>C-27-OH | 115.7<br>124.4<br>117.5<br>118.3<br>119.2<br>111.8<br>140.2<br>14.5<br>19.4<br>70.3 | 7.24 (1H, m)<br>6.87 (1H, td, J=7.0, 1.5 Hz)<br>6.91 (1H, td, J=7.0, 1.5 Hz)<br>7.25 (1H, m)<br>0.95 (3H, s)<br>1.03 (3H, s)<br>4.00 (1H, s)                     | 115.8<br>124.3<br>117.5<br>118.3<br>119.2<br>111.8<br>140.2<br>14.7<br>19.2<br>70.3 | 7.23 (1H, m)<br>6.87 (1H, td, <i>J</i> =7.0, 1.5 Hz)<br>6.90 (1H, td, <i>J</i> =7.0, 1.5 Hz)<br>7.24 (1H, m)<br>0.94 (3H, s)<br>1.14 (3H, s)<br>4.00 (1H, s)                     | 115.8<br>124.3<br>117.6<br>118.4<br>119.3<br>111.8<br>140.2<br>14.8<br>19.3<br>70.0 | 7.24 (1H, d, J=8.0 Hz)<br>6.88 (1H, d, J=7.0 Hz)<br>6.90 (1H, dd, J=8.0, 7.0 Hz)<br>7.27 (1H, d, J=8.0 Hz)<br>0.91 (3H, s)<br>0.78 (3H, s) |  |
| C-28<br>C-29<br>C-31<br>C-33<br>C-34<br>C-35<br>C-36                                    | 24.8<br>26.7                                                                        | 1.02 (3H, s)<br>1.06 (3H, s)                                                                                                                                     | 24.9<br>26.7                                                                        | 1.02 (3H, s)<br>1.06 (3H, s)                                                                                                                                                     | 24.7<br>26.7                                                                        | 0.98 (3H, s)<br>1.04 (3H, s)                                                                                                               |  |
| C-37<br>C-37-OH<br>C-38<br>C-39<br>C-40<br>C-41<br>C-42                                 | 13.1<br>I                                                                           | 0.77 (3H, s)                                                                                                                                                     | 59.8                                                                                | 3.72 (1H, m)<br>3.90 (1H, m)<br>3.97 (1H, m)                                                                                                                                     | 208.0                                                                               | 10.1 (1H, d, <i>J</i> =6.5 Hz)                                                                                                             |  |

a) Each sample was dissolved in DMSO- $d_6$ . Chemical shifts are shown with reference to DMSO- $d_6$  as 39.5 ppm. b) Chemical shifts are shown with reference to DMSO- $d_6$  as 2.50 ppm.

preparative HPLC (Senshu ODS-H-6251,  $30 \times 250$  mm; solvent, 50% CH<sub>3</sub>CN; UV at 282 nm; 20 ml/minute). Under the conditions, terpendoles G, H and I were eluted with retention times of 36.5, 33.0 and 31.0 minutes, respectively. The fractions were concentrated and extracted with ethyl acetate to give pure terpendoles G (31.0 mg), H (4.0 mg) and I (200 mg) as white powders. The fr-3 was concentrated *in vacuo* to give a pale yellow oily material (60 mg). Further purification of terpendole F was carried out by gel filtration using Sephadex LH-20  $(35 \times 415 \text{ mm}; \text{ solvent, methanol})$ . Each 5.0 ml was successively collected, and the 24th to 37th fractions were enriched with terpendole F. They were pooled and concentrated *in vacuo* to give a white powder (25.0 mg). Terpendole F was finally purified by preparative HPLC (Senshu ODS-H-6251,  $30 \times 250 \text{ mm};$  solvent, 45%CH<sub>3</sub>CN; UV at 282 nm; 20 ml/minute). The peak eluting with a retention time of 28.0 minutes was concentrated and extracted with ethyl acetate to give pure terpendole F (15.0 mg) as white powder.

| C. I.                                                                                | Т                                                                                         | erpendole H                                                                                                                                                                                                                   | Т                                                                                         | erpendole I                                                                                                                                                                                                                     | Terpendole J                                                                        |                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.                                                                                  | <sup>13</sup> C chemical<br>shifts (ppm) <sup>a</sup>                                     | <sup>1</sup> H chemical<br>shifts (ppm) <sup>b</sup>                                                                                                                                                                          | <sup>13</sup> C chemical<br>shifts (ppm) <sup>4</sup>                                     | 1 <sup>1</sup> H chemical<br><sup>a</sup> shifts (ppm) <sup>b</sup>                                                                                                                                                             | <sup>13</sup> C chemical<br>shifts (ppm) <sup>a</sup>                               | <sup>1</sup> H chemical<br>shifts (ppm) <sup>b</sup>                                                                                                                        |  |
| NH-1<br>C-2<br>C-3<br>C-4<br>C-5                                                     | 150.8<br>48.5<br>38.5<br>28.0                                                             | 10.80 (1H, s)                                                                                                                                                                                                                 | 154.0<br>52.2<br>43.8<br>27.5 Ha                                                          | 1.62 (1H dd 7-13.0 5.5 Hz)                                                                                                                                                                                                      | 151.9<br>50.7<br>42.3<br>27.4 На                                                    | 7.76 (1H, bs)                                                                                                                                                               |  |
| C-6<br>C-7<br>C-9<br>C-10                                                            | 28.4 Ha<br>Hb<br>70.7<br>76.3<br>66.2                                                     | 1.78 (1H, m)<br>2.30 (1H, m)<br>3.90 (1H, t, <i>J</i> =9.0 Hz)<br>3.18 (1H, d, <i>J</i> =9.0 Hz)<br>3.33 (1H, dd, <i>J</i> =9.0, 1.5 Hz)                                                                                      | 29.6<br>73.1<br>77.9<br>68.8                                                              | 1.52 (11, dd, <i>J</i> =13.0, 5.5 Hz)<br>1.78 (1H, m)<br>2.24 (1H, m)<br>4.15 (1H, t, <i>J</i> =9.0 Hz)<br>3.33 (1H, d, <i>J</i> =9.0 Hz)<br>3.91 (1H, dd, <i>J</i> =9.0, 1.5 Hz)                                               | 27.8<br>71.4<br>74.7<br>67.2                                                        | 2.70 (1H, m)<br>1.76 (1H, m)<br>2.28 (1H, m)<br>4.20 (1H, t, J=9.0 Hz)<br>3.43 (1H, d, J=9.0 Hz)<br>3.99 (1H, dd, J=9.0, 1.5 Hz)                                            |  |
| C-10-OF<br>C-11<br>C-11-OF<br>C-12<br>C-13<br>C-13                                   | H 63.0<br>H 62.8<br>67.1                                                                  | 5.24 (1H, m)<br>3.32 (1H, m)                                                                                                                                                                                                  | 65.2<br>70.8<br>78.7                                                                      | 3.43 (1H, bs)                                                                                                                                                                                                                   | 64.3<br>68.8<br>77.9                                                                | 4.65 (1H, s)<br>3.61 (1H, s)                                                                                                                                                |  |
| C-13-OF<br>C-14<br>C-15<br>C-16<br>C-17                                              | 4<br>54.9<br>24.7 Ha<br>Hb<br>45.1<br>26.8 Ha                                             | 3.22 (1H, m)<br>1.88 (1H, m)<br>2.07 (1H, dd, <i>J</i> =12.5, 3.5 Hz)<br>2.65 (1H, m)<br>2.20 (1H, dd, <i>J</i> =13.0, 11.0 Hz)                                                                                               | 30.8 Ha<br>Hb<br>22.1<br>51.7<br>28.4 Ha                                                  | 1.28 (1H, m)<br>1.57 (1H, m)<br>1.51 (1H, m)<br>1.88 (1H, m)<br>2.69 (1H, m)<br>2.32 (1H, dd, J=12.0, 10.5 Hz)                                                                                                                  | 30.4 Ha<br>Hb<br>20.6<br>50.1<br>27.2                                               | 1.48 (1H, dt, <i>J</i> =13.2, 4.8 Hz)<br>1.58 (1H, m)<br>1.63 (1H, m)<br>1.93 (1H, dd, <i>J</i> =12.5, 3.5 Hz)<br>2.80 (1H, m)<br>2.42 (1H dd, <i>J</i> =13.0, 11.0 Hz)     |  |
| C-18<br>C-19<br>C-20<br>C-21<br>C-22<br>C-23<br>C-24<br>C-25<br>C-26<br>C-27<br>C-27 | Hb<br>114.8<br>124.3<br>117.9<br>118.5<br>119.6<br>111.8<br>140.2<br>16.4<br>18.2<br>71.7 | <ul> <li>2.64 (1H, dd, J=13.0, 6.0 Hz)</li> <li>7.27 (1H, d, J=8.0 Hz)</li> <li>6.90 (1H, t, J=8.0 Hz)</li> <li>6.95 (1H, t, J=8.0 Hz)</li> <li>7.26 (1H, d, J=8.0 Hz)</li> <li>1.02 (3H, s)</li> <li>1.14 (3H, s)</li> </ul> | Hb<br>117.4<br>126.7<br>119.0<br>120.0<br>120.9<br>112.9<br>142.1<br>16.8<br>19.2<br>73.9 | 2.63 (1H, m, <i>J</i> =12.0 Hz)<br>7.29 (1H, dd, <i>J</i> =7.0, 1.5 Hz)<br>6.91 (1H, dt, <i>J</i> =7.0, 1.5 Hz)<br>6.96 (1H, dt, <i>J</i> =7.0, 1.5 Hz)<br>7.27 (1H, dd, <i>J</i> =7.0, 1.5 Hz)<br>1.24 (3H, s)<br>1.01 (3H, s) | 117.6<br>125.2<br>118.5<br>119.6<br>120.4<br>111.4<br>139.7<br>16.0<br>18.8<br>79.1 | 2.71 (1H, dd, J=13.0, 6.0 Hz)<br>7.44 (1H, d, J=8.0 Hz)<br>7.08 (1H, t, J=8.0 Hz)<br>7.08 (1H, t, J=8.0 Hz)<br>7.31 (1H, d, J=8.0 Hz)<br>1.27 (3H, s)<br>1.12 (3H, s)       |  |
| C-27-OF<br>C-28<br>C-29<br>C-31<br>C-33<br>C-34<br>C-35<br>C-36<br>C-37              | 4<br>27.8<br>24.7                                                                         | 4.76 (1H, s)<br>1.13 (3H, s)<br>1.12 (3H, s)                                                                                                                                                                                  | 27.8<br>25.3                                                                              | 1.212 (3H, s)<br>1.208 (3H, s)                                                                                                                                                                                                  | 19.2<br>23.6<br>58.1<br>120.6<br>137.2<br>17.9<br>25.7                              | 1.23 (3H, s)<br>1.29 (3H, s)<br>3.96 (2H, d, <i>J</i> =7.0 Hz)<br>5.26 (1H, tt, <i>J</i> =7.0, 0.5 Hz)<br>1.71 (3H, d, <i>J</i> =0.5 Hz)<br>1.65 (3H, d, <i>J</i> = 0.5 Hz) |  |
| C-37-OF<br>C-38<br>C-39<br>C-40<br>C-41<br>C-42                                      | ł                                                                                         |                                                                                                                                                                                                                               |                                                                                           |                                                                                                                                                                                                                                 |                                                                                     |                                                                                                                                                                             |  |

Table 2-2. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts of terpendoles H, I and J.

a) Each sample was dissolved in DMSO- $d_6$ . Chemical shifts are shown with reference to DMSO- $d_6$  as 39.5 ppm. b) Chemical shifts are shown with reference to DMSO- $d_6$  as 2.50 ppm.

<sup>c)</sup> Each sample was dissolved in CD<sub>3</sub>OD. Chemical shifts are shown with reference to CD<sub>3</sub>OD as 49.8 ppm. <sup>d)</sup> Chemical shifts are shown with reference to CD<sub>3</sub>OD as 3.30 ppm.

e) Each sample was dissolved in CDCl<sub>3</sub>. Chemical shifts are shown with reference to CDCl<sub>3</sub> as 77.7 ppm. <sup>f)</sup> Chemical shifts are shown with reference to CDCl<sub>3</sub> as 7.26 ppm.

# Physico-chemical Properties of Terpendoles E to L

Physico-chemical properties of terpendoles E to L are summarized in Table 1. All the terpendoles showed the same UV absorption maxima at  $279 \sim 283$  and  $228 \sim 238$  nm and the same fragment ion peak of m/z 130 in the EI-MS spectra, suggesting the presence of a common indole moiety in their structures.

## Structure of Terpendole L

The molecular formula of terpendole L was determined to be  $C_{37}H_{49}NO_5$  on the basis of HREI-MS measurement (m/z, found 587.3546, calcd 587.3598). The

<sup>13</sup>C NMR spectrum (DMSO- $d_6$ ) showed 37 resolved peaks (Table 2), which were classified into eight –CH<sub>3</sub>, six –CH<sub>2</sub>, one –CH–, five –O–CH–, five –CH=, and 12 quaternary carbons by analysis of the DEPT spectra. The <sup>1</sup>H NMR spectrum displayed 49 proton signals (Table 2-3). The results supported the molecular formula. The connectivity of proton and carbon atoms was confirmed by the HMQC spectrum (Table 2-3). Two singlet protons ( $\delta$  10.64 and 4.52) suggested the presence of NH and OH protons from the molecular formula and HMQC spectrum. Analyses of <sup>1</sup>H-<sup>1</sup>H COSY spectrum revealed the six partial structures I to VI (Fig. 5). <sup>13</sup>C-<sup>1</sup>H long-range couplings of <sup>2</sup>J and <sup>3</sup>J observed in the HMBC

Table 2-3. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts of terpendoles K and L.

| No.13C chemical<br>shifts (ppm) <sup>4</sup> <sup>14</sup> d hemical<br>shifts (ppm) <sup>b</sup> 13C chemical<br>shifts (ppm) <sup>a</sup> <sup>14</sup> d hemical<br>shifts (ppm) <sup>b</sup> NH-1<br>C-2152.610.72(1H, bs)10.64 (1H, s)NH-1<br>C-2152.6152.049.9C-443.32.90 (1H, d, J=16.0, 7.0 Hz)25.52.42 (2H, m)C-6105.45.25 (1H, dd, J=6.5, 2.0 Hz)28.4Ha1.63 (1H, m)Hb2.90 (1H, d, J=6.5, 2.0 Hz)28.4Ha1.63 (1H, m)C-7145.070.74.26 (1H, t, J=9.0 Hz)C-974.03.836 (1H, s)71.13.40 (1H, t, J=9.0 Hz)C-1070.34.16 (1H, d, J=10.0 Hz)70.14.06 (1H, t, J=9.0 Hz)C-1158.53.84 (1H, d, J=10.0 Hz)76.576.5C-1264.567.076.5C-1374.976.54.52 (1H, s)C-1428.81.53 -1.58 (2H, m)28.61.46-1.50 (2H, m)C-1520.6 Ha1.53 (1H, m)49.72.69 (1H, m)Hb1.78 (1H, m)49.72.69 (1H, m)Ha2.60 (1H, m)114.4C-1520.6 (1H, d) =12.5, 10.5 Hz)131.4Ha2.60 (1H, M)114.4C-18115.0119.56.81 (1H, d, J=7.0 Hz)C-22119.46.99 (1H, L, J=7.0 Hz)117.66.64 (1H, d, J=7.0 Hz)C-2311.97.28 (1H, d, J=7.0 Hz)119.56.81 (1H, d, J=6.5 Hz)C-24140.012.4139.81.60C-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbon  |              | rpendole K                              | Terpendole L                                                             |               |          |                |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-----------------------------------------|--------------------------------------------------------------------------|---------------|----------|----------------|---------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.     | 13C chamical |                                         | lH chemical                                                              | 13C chamical  |          | ITT shared and |                                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | shifts (pr   | om)a                                    | shifts (ppm) <sup>b</sup>                                                | shifts (1     | nnm)8    | ì              | shifts (ppm)b                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | sintes (p)   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | sinte (ppn)                                                              | SILLES (      | ppiny    |                | sints (ppin)                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH-1    |              |                                         | 10.72(1H, bs)                                                            |               |          | 10.6           | 4 (1H, s)                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-2     | 152.6        |                                         |                                                                          | 152.0         |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-3     | 50.2         |                                         |                                                                          | 49.9          |          |                |                                       |
| C-5 28.8 Ha 2.20 (1H, dd, J=16.0, 7.0 Hz) 25.5 2.42 (2H, m)<br>Hb 2.90 (1H, dd, J=6.5, 2.0 Hz) 28.4 Ha 1.63 (1H, m)<br>Hb 2.14 (1H, m)<br>C-7 145.0 70.7 4.26 (1H, t, J=9.0 Hz) 70.1 4.06 (1H, d, J=9.0 Hz) 70.1 70.1 4.06 (1H, d, J=9.0 Hz) 70.1 70.1 74.9 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-4     | 43.3         |                                         |                                                                          | 42.2          |          |                |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-5     | 28.8         | Ha<br>Hb                                | 2.20 (1H, dd, <i>J</i> =16.0, 7.0 Hz)<br>2.90 (1H, d, <i>J</i> =16.0 Hz) | 25.5          |          | 2.42           | (2H, m)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-6     | 105.4        |                                         | 5.25 (1H, dd, <i>J</i> =6.5, 2.0 Hz)                                     | 28.4          | Ha<br>Hb | 1.63<br>2.14   | (1H, m)<br>(1H, m)                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-7     | 145.0        |                                         |                                                                          | 70.7          |          | 4.26           | (1H, t, J=9.0 Hz)                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-9     | 74.0         |                                         | 3.836 (1H, s)                                                            | 71.1          |          | 3.40           | (1H, d, J=9.0 Hz)                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-10    | 70.3         |                                         | 4.16 (1H, d, $J=10.0 \text{ Hz}$ )                                       | 70.1          |          | 4.06           | (1H, d, J=9.0 Hz)                     |
| $ \begin{array}{ccccc} C-10-OH \\ C-11 & 58.5 & 3.84 (1H, d, J=10.0 \text{ Hz}) & 58.9 & 3.51 (1H, s) \\ \hline C-12 & 64.5 & 67.0 \\ C-13 & 74.9 & 76.5 \\ \hline C-13 & 74.9 & 76.5 \\ \hline C-14 & 28.8 & 1.53-1.58 (2H, m) & 28.6 & 1.46-1.50 (2H, m) \\ \hline C-14 & 28.8 & 1.53-1.58 (2H, m) & 28.6 & 1.46-1.50 (2H, m) \\ \hline C-14 & 28.8 & 1.53 (1H, m) & 20.4 & Ha & 1.48 (1H, m) \\ Hb & 1.83 (1H, m) & Hb & 1.78 (1H, m) \\ Hb & 1.83 (1H, m) & 49.7 & 2.69 (1H, brs) \\ C-16 & 49.7 & 2.65 (1H, m) & 49.7 & 2.69 (1H, brs) \\ C-17 & 27.0 & Hb & 2.30 (1H, d, J=12.5, 10.5 \text{ Hz}) & 28.5 & Ha & 2.42 (1H, m) \\ Ha & 2.60 (1H, m) & Hb & 2.70 (1H, t, J=6.0 \text{Hz}) \\ \hline C-18 & 115.0 & 114.4 \\ C-21 & 118.5 & 6.90 (1H, t, J=7.0 \text{ Hz}) & 131.4 \\ C-21 & 118.5 & 6.90 (1H, t, J=7.0 \text{ Hz}) & 131.4 \\ C-21 & 118.5 & 6.90 (1H, t, J=7.0 \text{ Hz}) & 117.6 & 6.64 (1H, d, J=8.0, 7.0 \text{ Hz}) \\ C-23 & 111.9 & 7.28 (1H, d, J=7.0 \text{ Hz}) & 119.5 & 6.81 (1H, dd, J=8.0, 7.0 \text{ Hz}) \\ C-24 & 140.0 & 139.8 \\ C-25 & 16.4 & 1.25 (3H, s) & 16.0 & 1.16 (3H, s) \\ C-26 & 19.3 & 1.04 (3H, s) & 18.0 & 1.03 (3H, s) \\ C-27 & 74.5 & 74.1 \\ \hline C-28 & 16.7 & 1.28 (3H, s) & 28.3 & 1.13 (3H, s) \\ C-29 & 27.9 & 1.19 (3H, s) & 28.3 & 1.13 (3H, s) \\ C-29 & 27.9 & 1.19 (3H, s) & 28.3 & 1.13 (3H, s) \\ C-23 & 113.0 & 137.4 \\ \hline C-24 & 138.0 & 137.4 \\ \hline C-35 & 18.5 & 1.66 (3H, s) & 25.5 \\ C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-37 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-38 & CH \\ \hline C-37 & CH \\ \hline C-38 & CH \\ \hline C-31 & CH \\ \hline C-39 & CH \\ \hline C-31 & CH \\ \hline C-32$ |         |              |                                         | ( , , ,,                                                                 |               |          |                | (, -, - , - , - , - , - , - , - , - , |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-10-OH | [            |                                         |                                                                          |               |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-11    | 58.5         |                                         | 3.84 (1H, d, <i>J</i> =10.0 Hz)                                          | 58.9          |          | 3.51           | (1H, s)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-11-OH | [            |                                         |                                                                          |               |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-12    | 64.5         |                                         |                                                                          | 67.0          |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-13    | 74.9         |                                         |                                                                          | 76.5          |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-13-OH | [            |                                         |                                                                          |               |          | 4.52           | (1H, s)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-14    | 28.8         |                                         | 1.53~1.58 (2H, m)                                                        | 28.6          |          | 1.46           | ~1.50 (2H, m)                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-15    | 20.6         | Ha                                      | 1.53 (1H, m)                                                             | 20.4          | Ha       | 1.48           | (1H, m)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |              | Hb                                      | 1.83 (1H, m)                                                             |               | Hb       | 1.78           | (1H, m)                               |
| C-17 27.0 Hb 2.30 (1H, dd, $J=12.5$ , 10.5 Hz)<br>Ha 2.60 (1H, m)<br>C-18 115.0 114.4<br>C-19 124.6 123.9<br>C-20 117.7 7.26 (1H, d, $J=7.0$ Hz) 131.4<br>C-21 118.5 6.90 (1H, t, $J=7.0$ Hz) 131.4<br>C-21 118.5 6.90 (1H, t, $J=7.0$ Hz) 117.6 6.64 (1H, d, $J=7.0$ Hz)<br>C-22 119.4 6.94 (1H, t, $J=7.0$ Hz) 119.5 6.81 (1H, dd, $J=8.0$ , 7.0 Hz)<br>C-23 111.9 7.28 (1H, d, $J=7.0$ Hz) 109.6 7.06 (1H, d, $J=8.0$ Hz)<br>C-24 140.0 139.8<br>C-25 16.4 1.25 (3H, s) 16.0 1.16 (3H, s)<br>C-26 19.3 1.04 (3H, s) 18.0 1.03 (3H, s)<br>C-27 74.5 74.1<br>C-27 OH<br>C-28 16.7 1.28 (3H, s) 16.7 1.22 (3H, s)<br>C-31 92.3 5.57 (1H, d, $J=6.5$ Hz) 92.0 5.51 (1H, d, $J=6.5$ Hz)<br>C-33 122.2 5.12 (1H, brd, $J=6.5$ Hz) 122.5 5.10 (1H, d, $J=6.5$ 1.0 Hz)<br>C-34 138.0 137.4<br>C-35 18.5 1.66 (3H, s) 25.0 1.65 (3H, d, $J=1.0$ Hz)<br>C-36 25.2 1.67 (3H, s) 18.3 1.64 (3H, d, $J=7.0$ Hz)<br>C-37 CH<br>C-37 CH<br>C-37 CH<br>C-37 CH<br>C-37 CH<br>C-37 CH<br>C-37 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-16    | 49.7         |                                         | 2.65 (1H, m)                                                             | 49.7          |          | 2.69           | (1H, brs)                             |
| Ha2.60 (1H, m)Hb2.70 (1H, t, $J=6.0$ Hz)C-18115.0114.4C-19124.6123.9C-20117.77.26 (1H, d, $J=7.0$ Hz)131.4C-21118.56.90 (1H, t, $J=7.0$ Hz)117.66.64 (1H, d, $J=7.0$ Hz)C-22119.46.94 (1H, t, $J=7.0$ Hz)119.56.81 (1H, dd, $J=8.0$ , 7.0 Hz)C-23111.97.28 (1H, d, $J=7.0$ Hz)109.67.06 (1H, d, $J=8.0$ Hz)C-24140.0139.8C-2516.41.25 (3H, s)16.01.16 (3H, s)C-2619.31.04 (3H, s)18.01.03 (3H, s)C-2774.574.1C-27-OH74.574.1C-2927.91.19 (3H, s)28.3C-3192.35.57 (1H, d, $J=6.5$ Hz)92.0C-33122.25.12 (1H, brd, $J=6.5$ Hz)122.5C-34138.0137.4C-3518.51.66 (3H, s)25.0C-3774.51.67 (3H, s)1.64 (3H, d, $J=1.0$ Hz)C-37741.67 (3H, s)1.64 (3H, d, $J=1.0$ Hz)C-371.67 (3H, s)1.64 (3H, d, $J=7.0$ Hz)C-371.67 (3H, s)1.67 (3H, s)C-3831.63.46 (2H, d, $J=7.0$ Hz)C-39124.05.30 (1H, tt, $J=7.0, 1.5$ Hz)C-40130.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-17    | 27.0         | Hb                                      | 2.30 (1H, dd, <i>J</i> =12.5, 10.5 Hz)                                   | 28.5          | Ha       | 2.42           | (1H, m)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |              | Ha                                      | 2.60 (1H, m)                                                             |               | Hb       | 2.70           | (1H, t, J=6.0Hz)                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-18    | 115.0        |                                         |                                                                          | 114.4         |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-19    | 124.6        |                                         |                                                                          | 123.9         |          |                |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-20    | 117.7        |                                         | 7.26 (1H, d, <i>J</i> =7.0 Hz)                                           | 131.4         |          |                |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-21    | 118.5        |                                         | 6.90 (1H, t, <i>J</i> =7.0 Hz)                                           | 117.6         |          | 6.64           | (1H, d, <i>J</i> =7.0 Hz)             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-22    | 119.4        |                                         | 6.94 (1H, t, <i>J</i> =7.0 Hz)                                           | 119.5         |          | 6.81           | (1H, dd, <i>J</i> =8.0, 7.0 Hz)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-23    | 111.9        |                                         | 7.28 (1H, d, <i>J</i> =7.0 Hz)                                           | 109.6         |          | 7.06           | (1H, d, J=8.0 Hz)                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-24    | 140.0        |                                         |                                                                          | 139.8         |          |                |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-25    | 16.4         |                                         | 1.25 (3H, s)                                                             | 16.0          |          | 1.16           | (3H, s)                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-26    | 19.3         |                                         | 1.04 (3H, s)                                                             | 18.0          |          | 1.03           | (3H, s)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-27    | 74.5         |                                         |                                                                          | 74.1          |          |                |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-27-OH | [            |                                         |                                                                          |               |          |                |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-28    | 16.7         |                                         | 1.28 (3H, s)                                                             | 16.7          |          | 1.22           | (3H, s)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-29    | 27.9         |                                         | 1.19 (3H, s)                                                             | 28.3          |          | 1.13           | (3H, s)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-31    | 92.3         |                                         | 5.57 (1H, d, J=6.5 Hz)                                                   | 92.0          |          | 5.51           | (1H, d, <i>J</i> =6.5 Hz)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-33    | 122.2        |                                         | 5.12 (1H, brd, J=6.5 Hz)                                                 | 122.5         |          | 5.10           | (1H, dt, <i>J</i> =6.5, 1.0 Hz)       |
| C-35       18.5       1.66 (3H, s)       25.0       1.65 (3H, d, $J=1.0 \text{ Hz})$ C-36       25.2       1.67 (3H, s)       18.3       1.64 (3H, d, $J=1.0 \text{ Hz})$ C-37       C-37       1.67 (3H, s)       18.3       1.64 (3H, d, $J=1.0 \text{ Hz})$ C-37       C-37-OH       1.65 (3H, d, $J=1.0 \text{ Hz})$ 1.64 (3H, d, $J=7.0 \text{ Hz})$ C-38       31.6       3.46 (2H, d, $J=7.0 \text{ Hz})$ 1.53 (1H, tt, $J=7.0, 1.5 \text{ Hz})$ C-40       130.6       1.60 (2H, d, J=5.5 \text{ Hz})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-34    | 138.0        |                                         |                                                                          | 137. <b>4</b> |          |                |                                       |
| C-36       25.2       1.67 (3H, s)       18.3       1.64 (3H, d, $J=1.0 \text{ Hz})$ C-37       C-37       1.64 (3H, d, $J=1.0 \text{ Hz})$ C-37       State of the state of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-35    | 18.5         |                                         | 1.66 (3H, s)                                                             | 25.0          |          | 1.65           | (3H, d, <i>J</i> =1.0 Hz)             |
| C-37<br>C-37-OH<br>C-38 31.6 3.46 (2H, d, <i>J</i> =7.0 Hz)<br>C-39 124.0 5.30 (1H, tt, <i>J</i> =7.0, 1.5 Hz)<br>C-40 130.6<br>C-41 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-36    | 25.2         |                                         | 1.67 (3H, s)                                                             | 18.3          |          | 1.64           | (3H, d, <i>J</i> =1.0 Hz)             |
| C-37-OH<br>C-38 31.6 3.46 (2H, d, J=7.0 Hz)<br>C-39 124.0 5.30 (1H, tt, J=7.0, 1.5 Hz)<br>C-40 130.6 127 128 129 129 129 129 129 129 129 129 129 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-37    |              |                                         |                                                                          |               |          |                |                                       |
| C-38       31.6       3.46 (2H, d, J=7.0 Hz)         C-39       124.0       5.30 (1H, tt, J=7.0, 1.5 Hz)         C-40       130.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-37-OH | I            |                                         |                                                                          |               |          |                |                                       |
| C-39 124.0 5.30 (1H, ti, <i>J</i> =7.0, 1.5 Hz)<br>C-40 130.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-38    |              |                                         |                                                                          | 31.6          |          | 3.46           | (2H, d, J=7.0 Hz)                     |
| C-40 130.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-39    |              |                                         |                                                                          | 124.0         |          | 5.30           | (1H, tt, J=7.0, 1.5 Hz)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-40    |              |                                         |                                                                          | 130.6         |          | -              |                                       |
| 1/./ 1.69 (3H. d. J=0.5 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-41    |              |                                         |                                                                          | 17.7          |          | 1.69           | (3H, d, J=0.5 Hz)                     |
| C-42 25.5 1.66 (3H, d, J=0.5 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-42    |              |                                         |                                                                          | 25.5          |          | 1.66           | (3H, d, J=0.5 Hz)                     |

a) Each sample was dissolved in DMSO- $d_6$ . Chemical shifts are shown with reference to DMSO- $d_6$  as 39.5 ppm. b) Chemical shifts are shown with reference to DMSO- $d_6$  as 2.50 ppm.

spectrum (Fig. 6) gave the following evidences; 1) The cross peaks from H<sub>2</sub>-38 ( $\delta$  3.46) to C-39 ( $\delta$  124.0) and C-40 (\$\delta\$ 130.6), from H-39 (\$\delta\$ 5.30) to C-38 (\$\delta\$ 31.6), C-41 ( $\delta$  17.7) and C-42 ( $\delta$  25.5), from H<sub>3</sub>-41 ( $\delta$  1.69) to C-39, C-40, and C-42, and from H<sub>3</sub>-42 ( $\delta$  1.66) to C-39, C-40 and C-41 showed the presence of an isoprenyl moiety containing the partial structure I. A fragment ion peak (m/z 69) of EI-MS also supported the presence of an isoprenyl moiety. 2) The cross peaks from H-21 ( $\delta$  6.64) to C-19 (\$\delta\$ 123.9) and C-23 (\$\delta\$ 109.6), from H-22 (\$\delta\$ 6.81) to C-20 ( $\delta$  131.4) and C-24 ( $\delta$  139.8), and from H-23 ( $\delta$  7.06) to C-19 and C-21 ( $\delta$  117.6) indicated a 1,2,3-trisubstituted benzene containing the partial structure II. 3) The long-range couplings from  $H_2$ -38 to C-19, C-20 and C-21, and from H-21 to C-38 showed that the isoprenyl group was attached to C-20 of the benzene. 4) The long-range couplings from NH-1 ( $\delta$ 10.64) to C-2 (\$\delta\$ 152.0), C-18 (\$\delta\$ 114.4), C-19 and C-24

showed that a pyrrole ring was attached to benzene, leading to the constructions of 2,3,4- the trisubstituted indole moiety as expected from UV and EI-MS. 5) The long-range couplings from H-16 ( $\delta$  2.69) to C-2 and C-18, from  $H_2$ -17 ( $\delta$  2.42 and 2.70) to C-2 and C-18, and from  $H_3$ -25 ( $\delta$  1.16) to C-2, C-3 ( $\delta$  49.9) and C-16 ( $\delta$  49.7) suggested that a cyclopentane ring containing a part of the partial structure III was attached to the indole moiety. 6) The long-range couplings from H<sub>2</sub>-14 ( $\delta$  1.46~1.50) to C-13 ( $\delta$  76.5) and C-4 ( $\delta$  4.22), from H<sub>3</sub>-26 ( $\delta$  1.03) to C-3, C-4 and C-13, and from H<sub>3</sub>-25 to C-4 suggested that a cyclohexane ring was attached to the cyclopentane ring. 7) The long-range couplings from  $H_2$ -6 ( $\delta$  1.63 and 2.14) to C-4, C-5 (δ 25.5), C-7 (δ 70.7) and C-12 (δ 67.0), from H-7 (δ 4.26) to C-6 (δ 28.4) and C-12, from 13-OH ( $\delta$  4.52) to C-4, C-12 and C-13, and from H<sub>3</sub>-26 to C-5 suggested that another cyclohexane ring, which contained the partial structure IV, was attached to the cyclohexane





Fig. 6. <sup>1</sup>H-<sup>1</sup>H COSY and HMBC experiments of terpendole L.



ring. 8) The long-range couplings from H-7 to C-11 ( $\delta$ 58.9), from H-9 (\$ 3.40) to C-7 and C-11, from H-10 (\$ 4.06) to C-9 ( $\delta$  71.1), and from H-11 ( $\delta$  3.51) to C-9, C-12 and C-13 suggested that a tetrahydropyrane, which contained the partial structure V, was attached to the second cyclohexane moiety. 9) The long-range couplings were observed from H-9 to C-27 ( $\delta$  74.1), C-28 ( $\delta$  16.7) and C-29 ( $\delta$  28.3), from H-10 to C-27 from H<sub>3</sub>-28 ( $\delta$ 1.22) to C-9, C-27 and C-29, from  $H_3$ -29 ( $\delta$  1.13) to C-9, C-27 and C-28, and from H-31 (\$ 5.51) to C-10 (\$ 70.1) and C-27, and the chemical shift of C-31 ( $\delta$  92.0) was comparable with that of an acetal carbon. Therefore, 1,3-dioxane ring was suggested. 10) The long-range couplings were observed from H-31 to C-34 ( $\delta$  137.4), from H-33 (\$ 5.10) to C-35 (\$ 25.0) and C-36 (\$ 18.3), from  $H_3$ -35 ( $\delta$  1.65) to C-33 ( $\delta$  122.5) and C-36, and from H<sub>3</sub>-36 ( $\delta$  1.64) to C-33 and C-35. Therefore, an isobutenyl residue containing the partial structure VI was attached to C-31 of the 1,3-dioxane ring. Finally the presence of an 11,12-epoxide was suggested because of the degree of unsaturation and the molecular formula. Taken together, the structure of terpendole L was elucidated as shown in Fig. 1.

# Structures of Terpendole K

Comparison of the NMR spectral data of terpendole K (Table 2-3 and Fig. 7) with those of terpendole L revealed that 1) one isoprenyl unit (C-38~C-42) was lacking and correspondingly the sp<sup>2</sup> methine carbon of C-20 ( $\delta$  117.7) was observed in terpendole K instead of the quarternary one ( $\delta$  131.4) in terpendole L, and 2) the sp<sup>2</sup> methine carbon of C-6 ( $\delta$  105.4) and the quarternary carbon of C-7 ( $\delta$  145.0) were observed in terpendole K instead of the methylene carbon ( $\delta$  28.4) and the oxymethine carbon ( $\delta$  70.7) in terpendole L. The structure of terpendole K was confirmed by the HMBC experiments as shown in Fig. 7. Consequently, the structure of terpendole K was determined as shown in Fig. 1.

# Fig. 7. ${}^{1}H{}^{-1}H$ COSY and HMBC experiments of terpendole K.



## Structures of Terpendole J

The <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>) of terpendole J (Table 2-2) was similar to those of terpendole K, but the three carbon signals of C-6, C-7 and C-31 were different, that is, the methylene C-6 ( $\delta$  27.8), the oxymethine C-7 ( $\delta$  71.4) and the oxymethylene C-31 ( $\delta$  58.1) carbons in terpendole J. The structural analyses were done by <sup>1</sup>H-<sup>1</sup>H COSY and HMBC experiments as shown in Fig. 8. The sequence of C-6 and C-7 was confirmed, which was the same as that of terpendole L. Regarding the C-31 carbon, it was concluded that the ether bond between O-10 and C-31 in terpendole K was opened with hydration because of 1) the presence of the oxymethylene proton of  $H_2$ -31 ( $\delta$  3.96), which showed <sup>1</sup>H-<sup>1</sup>H couplings with the sp<sup>2</sup> methine proton of H-33 ( $\delta$  5.26), 2) the fragment ion peak of m/z 69 corresponding to an isoprenyl residue in the EI-MS which was not observed in that for terpendole K, and 3) the long-range couplings from 10-OH ( $\delta$  4.65) to C-9 ( $\delta$  74.7), C-10 ( $\delta$  67.2) and C-11 ( $\delta$  64.3), from H-10 (\$\delta 3.99) to C-9, C-11 and C-27 (\$\delta 79.1) and from H<sub>2</sub>-31 (δ 3.96) to C-27, C-33 (δ 120.6) and C-34 (δ 137.2) in the HMBC experiments. Thus, the structure of terpendole J was determined as shown in Fig. 1.

## Structures of Terpendoles H and I

Comparison of the molecular formulas between terpendoles I and J revealed that  $C_5H_8$  corresponding to an isoprenyl unit was lacking in terpendole I. Furthermore, comparison of various NMR data (Table 1) confirmed that terpendole I is 30-deisoprenyl-terpendole J as shown in Fig. 1.

Comparison of the spectral data between terpendoles H and I indicated that two hydrogen atoms are lacking in terpendole H from the molecular formula (Table 1), and that the C-14 oxymethine ( $\delta$  54.9) carbon was observed for terpendole H in place of the corresponding methylene carbon for terpendole I from the <sup>13</sup>C NMR spectrum (Table 2-2). Furthermore, the quaternary carbon of C-13

# Fig. 8. <sup>1</sup>H-<sup>1</sup>H COSY and HMBC experiments of terpendole



( $\delta$  67.1) was shifted to a higher field than that of terpendole I. In the HMBC experiments the long-range couplings were observed from H<sub>2</sub>-15 ( $\delta$  1.88, 2.07) to C-13 and C-14, and from H-14 ( $\delta$  3.22) to C-13 and C-16 ( $\delta$  45.1) (Fig. 9). These data revealed that terpendole H is 13,14-epoxy derivative of terpendole I as shown in Fig. 1.

## Structures of Terpendole F

The structure of terpendole F was determined by comparison of various spectral data with those of terpendole I. The result are illustrated in Fig. 10. First, terpendole F lacks the 13-OH of terpendole I. In fact, the proton sequence of  $-C^{13}H-C^{14}H_2-C^{15}H_2-$  was confirmed from the <sup>1</sup>H-<sup>1</sup>H COSY spectrum. In the HMBC experiments the long-range couplings were observed from H<sub>2</sub>-14 to C-13 ( $\delta$  37.8), from H-13 ( $\delta$  2.10) to C-4 (\$\delta\$ 39.2), C-12 (\$\delta\$ 43.4), C-14 (\$\delta\$ 23.0), and C-26  $(\delta$  19.2), from H<sub>2</sub>-5 ( $\delta$  1.68, 1.88) to C-13, and from H-7 ( $\delta$  3.49) to C-12. Second, terpendole I has a hydroxy group at the C-11 position. Because the <sup>1</sup>H-<sup>1</sup>H COSY data revealed the proton sequence -O-C<sup>9</sup>H-C<sup>10</sup>H<sub>2</sub>-C<sup>11</sup>H–OH, and the long-range couplings were observed from H-11 (\$\delta\$ 4.18) to C-7 (\$\delta\$ 76.7), C-9 (\$\delta\$ 78.8) and C-12 from H<sub>2</sub>-10 ( $\delta$  1.46, 1.85) to C-11 ( $\delta$  63.4), C-9 and C-12, and from 11-OH ( $\delta$  4.48) to C-11 and C-12 in the HMBC experiments. Finally, the long-range couplings were observed from  $H_2$ -37 ( $\delta$  3.72, 3.90) to C-11 and C-12, and the NOE was observed between the hydroxy proton of 37-OH ( $\delta$  3.97) and H-37 ( $\delta$  3.72). Therefore, the hydroxymethyl group is attached to the C-12 bridge head carbon in terpendole I.

Taken together, the structure of terpendole F was determined as shown in Fig. 1.

### Structures of Terpendoles E and G

By comparison of various spectral data of terpendoles E and G with those of terpendole F, the structural differences were found to lie only in the C-37 position. Terpendoles E and G showed methyl ( $\delta$  13.1) and

Fig. 9. <sup>1</sup>H-<sup>1</sup>H COSY and HMBC experiments of terpendole H.







Table 3. Single crystal X-ray crystallographic analysis.

| Crystal parameters                                        |                                                 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Empirical fromula                                         | C <sub>28</sub> H <sub>37</sub> NO <sub>3</sub> |  |  |  |  |
| Formula weight                                            | 435.61                                          |  |  |  |  |
| Crystal dimensions (mm)                                   | 0.4 x 0.5 x 0.1                                 |  |  |  |  |
| Crystal system                                            | Orthorhombic                                    |  |  |  |  |
| Lattice Parameters:                                       | a = 7.989 (9)  Å                                |  |  |  |  |
|                                                           | b = 46.22 (2) Å                                 |  |  |  |  |
|                                                           | c = 6.43 (1) Å                                  |  |  |  |  |
|                                                           | $V = 2375 (1) \text{ Å}^3$                      |  |  |  |  |
| Space group                                               | $P2_{1}2_{1}2_{1}$ with Z=4                     |  |  |  |  |
| Density calc (g/cm <sup>3</sup> )                         | 1.218                                           |  |  |  |  |
| Linear absorption factor (cm <sup>-1</sup> )              | 5.77                                            |  |  |  |  |
| Refinement parameters                                     |                                                 |  |  |  |  |
| No. of reflections measured                               | 2,612                                           |  |  |  |  |
| Nonzero reflections (I> 3.00 $\sigma$ )                   | 1,363                                           |  |  |  |  |
| R-index Residuals: R <sup>a</sup>                         | 0.098                                           |  |  |  |  |
| Residuals: R <sub>w</sub> <sup>b</sup>                    | 0.083                                           |  |  |  |  |
| Goodness of fit indicator <sup>c</sup>                    | 4.99                                            |  |  |  |  |
| <sup>a</sup> Σ IIFol-IFcll/ΣIFol                          | ·······                                         |  |  |  |  |
| <sup>b</sup> $[(\Sigma w( Fo - Fc )^2/\Sigma wFo)]^{1/2}$ |                                                 |  |  |  |  |
| $\sum [\Sigma w ( Fo ^2 -  Fc )^2 / (No - Nv)]^{1/2}$     |                                                 |  |  |  |  |
|                                                           |                                                 |  |  |  |  |

No=number of observations Nv=number of variables



Fig. 11. Relative molecular structure of terpendole E determined by X-ray crystallography.

Fig. 12. ACAT inhibition by terpendoles A to L, paspaline and emindole SB in the enzyme assay using rat liver microsomes.



aldehyde ( $\delta$  208.0) carbon signals for the C-37 position, respectively, in place of C-37 oxymethylene carbon signal in terpendole F (Table 2-1). The structural analyses were done by the <sup>1</sup>H-<sup>1</sup>H COSY and HMBC experiments (Fig. 10). As a result, the structures of terpendoles E and G were determined as shown in Fig. 1.

# X-ray Crystallographic Analysis of Terpendole E

The data from a single crystal X-ray crystallographic analysis of terpendole E are summarized in Table 3. The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 1363 observed reflections and 289 variable parameters and converged with unweighted and weighted agreement factors of R = 0.098,  $R_w = 0.083$ . Thus, the structure of terpendole E described above was secured, and the relative configuration was also determined as shown in Fig. 11.

# **Biological Properties**

# Effect of Terpendoles on ACAT Activity in Microsomes

All the terpendoles inhibited ACAT activity in a dose-dependent fashion as shown in Fig. 12. Terpendoles

J, K and L, having (an) additional isoprenyl unit(s) to the indoloditerpene core, exhibited moderate inhibitory activity with IC<sub>50</sub> values of  $38.8 \,\mu\text{M}$ ,  $38.0 \,\mu\text{M}$  and  $32.4 \,\mu\text{M}$ , respectively, but the other terpendoles showed weak ACAT inhibition (IC<sub>50</sub>: E 228  $\mu$ M, F 221  $\mu$ M, G 388  $\mu$ M, H 230  $\mu$ M and I 145  $\mu$ M).

# Other Biological Activities

No antimicrobial activity was observed at a concentration of 1 mg/ml (10  $\mu$ g/paper disk) for terpendoles E to L against the following microorganisms; *Bacillus subtilis*, *Mycobacterium smegmatis*, *Pseudomonas aeruginosa*, *Escherichia coli*, *Micrococcus luteus*, *Staphylococcus aureus*, *Candida albicans*, *Saccharomyces sake*, *Pyricularia oryzae*, *Mucor racemosus* and *Aspergillus niger*.

#### Discussion

In the previous report, we used the fermentation medium consisting of soluble starch 3.0%, glycerol 1.0%, soybean meal 2.0%, dry yeast 0.3%, KH<sub>2</sub>PO<sub>4</sub> 0.05%,  $CaCO_3 0.2\%$ , MgSO<sub>4</sub> · 7H<sub>2</sub>O 0.05% and KCl 0.3% (pH 6.5) for production of terpendoles A to  $D^{1}$ . From the culture broth, terpendoles K, H and I were also isolated in addition to terpendoles A to D, emindole SB and paspaline. Furthermore, the presence of novel other terpendoles was suggested from their specific UV spectra by HPLC analyses but their production was very low. By using the different fermentation medium as described in this paper, the production of terpendoles increased and enough amounts of novel other terpendoles were obtained to enable us to elucidate their structures. However, the production of terpendoles A and B was still low.

The planar structures of terpendoles were elucidated by spectral data mainly including various NMR experiments, revealing that they have a common indoloditerpene core. On the basis of the structural carbon skeleton, they are classified into 4 groups; 1) the fundamental indoloditerpene group such as terpendoles E, F and G, 2) the 12-demethylated indoloditerpene group including terpendoles B, H and I, 3) the 12-demethylated and 27-*O*-prenylated indoloditerpene group such as terpendoles A, C, D, J and K, and 4) the 12-demethylated, 20-*C*-prenylated and 27-*O*-prenylated indoloditerpene of terpendole L. Emindole SB and paspaline belong to the first group. During the processing of the carbon skeleton, oxidation and/or epoxidation

core to produce variety kinds of terpendoles. The relative stereostructure of terpendole E was determined by X-ray crystallographic analysis (Fig. 11) although the R-indexes were not so good due to the very thin crystal (Table 3), showing good coincidence with those of terpendole  $D^{2}$ , paspaline<sup>4</sup>) and emindole SB<sup>3</sup>). The other terpendoles F to L were expected to be biosynthetically related, and their stereostructures were deduced as shown in Fig. 1. However, the stereochemistry of 13,14-epoxy residue in terpendole H still remains to be defined.

reactions occur at the certain positions of the terpene

As reported previously, an additional prenyl residue at the 27-O-position is important for potent ACAT inhibition<sup>1)</sup>. Among the terpendoles appeared in this paper, terpendoles J, K and L have such a prenyl residue, and showed more potent ACAT inhibition (IC<sub>50</sub>)  $32.4 \sim 38.8 \,\mu\text{M}$ ) than the other terpendoles ( $145 \sim 388 \,\mu\text{M}$ ). Unexpectedly, however, their inhibitory activity is one magnitude less potent than that of terpendoles C and D (IC<sub>50</sub> 2.1 and  $3.2 \,\mu$ M, respectively). One possible reason might be the poor solubility of terpendole L to both water and organic solvents. The hydroxy residue at the C-13 position of the diterpene is believed to be responsible for exhibiting tremorgenic activity<sup>12)</sup>. Terpendoles A, C, I, J, K and L have such a hydroxy group. However, it is still unclear whether they exhibit tremorgenic activity or not.

### Acknowledgment

We express our thanks to Mr. I. NAMATAME for his assistance throughout this work, and to Ms. N. SATO and Ms. A. HATANO for NMR spectra. This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan and from Japan Keirin Association.

### References

- HUANG, X.-H.; H. TOMODA, H. NISHIDA, R. MASUMA & S. ŌMURA: Terpendoles, novel ACAT inhibitors produced by *Albophoma yamanashiensis*. I. Production, isolation and biological properties. J. Antibiotics 48: 1~4, 1995
- HUANG, X.-H.; H. NISHIDA, H. TOMODA, N. TABATA, K. SHIOMI, D.-J. YANG, H. TAKAYANAGI & S. ŌMURA: Terpendoles, novel ACAT inhibitors produced by *Albophoma yamanashiensis*. II. Structure elucidation of terpendoles A, B, C and D. J. Antibiotics 48: 5~11, 1995
- NOZAWA, K.; S. NAKAJIMA, K. KAWAI, S. UDAGAWA, Y. HORIE & N. YAMAZAKI: Novel indoloditerpenes, emindoles and related compounds from *Emericelia* spp. The 29th Symposium on Chemistry of Natural Products (Sapporo) pp. 637~643, 1987
- 4) SPRINGER, J. P. & J. CLARDY: Paspaline and paspalicine, two indole-mevalonate metabolites from *Claviceps paspali*. Tetrahedron Lett. 21: 231, 1980
- KOBAYASHI, T.; R. MASUMA, S. ŌMURA & K. WATANABE: Materials for fungus flora of Japan (47). Mycoscience 35: 399~401, 1994
- CROMER D. T. & J. T. WABER: International Tables for X-ray crystallography, Vol. IV, The Kynoch Press, Birmingham, England, 1974
- 7) IBERS, J. A. & W. C. HAMILTON: Acta Crystallogr. 17: 781 1964
- 8) TEXSAN-TEXRAY structure analysis package, Molecular Structure Corporation, 1985
- GILMORE, C. J.: Mithril—an intergrated direct methods computer program. J. Appl. Cryst. 17: 42~46, Univ. of Glasgow, Scotland, 1984
- 10) BEURSKENS, P. & T. DIRDIF: Direct methods for difference structures—an automatic procedure for phase extension and refinement of difference structure factors. Technical report 1984/1 crystallography laboratory, Toernooiveld, 6525 Ed. NIJEMGEN, Netherlands
- TOMODA, H.; H. NISHIDA, R. MASUMA, J. CAO, S. OKUDA & S. OMURA: Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by *Penicillium purpurogenum*. I. Production, isolation and physicochemical and biological properties. J. Antibiotics 44: 136~143, 1991
- BERTINA, V.: In Mycotoxins. Chemical, Biological and Environmental Aspects. pp. 353~387. Elsevier, Amsterdam, 1989